Water Desalination and Power Plant

Power Station

From Wikipedia


Desalination is a process that extracts mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance,[1] as in soil desalination, which is an issue for agriculture.[2]

Saltwater is desalinated to produce water suitable for human consumption or irrigation. One by-product of desalination is salt. Desalination is used on many seagoing ships and submarines. Most of the modern interest in desalination is focused on cost-effective provision of fresh water for human use. Along with recycled wastewater, it is one of the few rainfall-independent water sources.[3]

Due to its energy consumption, desalinating sea water is generally more costly than fresh water from rivers or groundwaterwater recycling and water conservation. However, these alternatives are not always available and depletion of reserves is a critical problem worldwide. Currently, approximately 1% of the world’s population is dependent on desalinated water to meet daily needs, but the UN expects that 14% of the world’s population will encounter water scarcity by 2025.[4]

Desalination is particularly relevant in dry countries such as Australia, which traditionally have relied on collecting rainfall behind dams for water.

According to the International Desalination Association, in June 2015, 18,426 desalination plants operated worldwide, producing 86.8 million cubic meters per day, providing water for 300 million people.[5] This number increased from 78.4 million cubic meters in 2013,[4] a 10.71% increase in 2 years. The single largest desalination project is Ras Al-Khair in Saudi Arabia, which produced 1,025,000 cubic meters per day in 2014,[4] although this plant is expected to be surpassed by a plant in California.[6] Kuwait produces a higher proportion of its water than any other country, totaling 100% of its water use.[7]


Vacuum distillation

The traditional process used in these operations is vacuum distillation—essentially boiling it to leave impurities behind. In desalination, atmospheric pressure is reduced, thus lowering the required temperature needed. Liquids boil when the vapor pressure equals the ambient pressure and vapor pressure increases with temperature. Thus, because of the reduced temperature, low-temperature “waste” heat from electrical power generation or industrial processes can be employed.[citation needed]

Multi-stage flash distillation

Water is evaporated and separated from sea water through multi-stage flash distillation, which is a series of flash evaporations.[8] Each subsequent flash process utilizes energy released from the condensation of the water vapor from the previous step and so on.[8]

Multiple-effect distillation

Multiple-effect distillation (MED) works through a series of steps called “effects”.[8] Incoming water is sprayed onto vertically or, more commonly, horizontally[8][9] oriented pipes which are then heated to generate steam. The steam is then used to heat the next batch of incoming sea water.[8] To increase efficiency, the steam used to heat the sea water can be taken from nearby power plants.[8] Although this method is the most thermodynamically efficient, a few limitations exist such as a max temperature and max number of effects.[9]

Vapor-compression distillation

Vapor-compression evaporation involves using either a mechanical compressor or a jet stream to compress the vapor present above the liquid. The compressed vapor is then used to provide the heat needed for the evaporation of the rest of the sea water.[8] Since this system only requires power, it is more efficient if kept at a small scale.[8]

Reverse osmosis

The principal competing process uses membranes to desalt saline water, principally applying reverse osmosis (RO).[10] The RO membrane processes use semipermeable membranes and applied pressure (on the membrane feed side) to preferentially induce water permeation through the membrane while rejecting salts. Reverse osmosis plantmembrane systems typically use less energy than thermal desalination processes. Desalination processes are driven by either thermal (e.g., distillation) or electrical (e.g., RO) as the primary energy types. Energy cost in desalination processes varies considerably depending on water salinity, plant size and process type. At present the cost of seawater desalination, for example, is higher than traditional water sources, but it is expected that costs will continue to decrease with technology improvements that include, but are not limited to, reduction in plants footprint, improvements to plant operation and optimization, more effective feed pretreatment, and lower cost energy sources.[11]

The Reverse Osmosis process is not maintenance free. Various factors interfere with efficiency: ionic contamination (calcium, magnesium etc.); DOC; bacteria; viruses; colloids & insoluble particulates; biofouling and scaling. In extreme cases destroying the RO membranes. To mitigate damage, various pretreatment stages are introduced. Anti-scaling inhibitors include acids and other agents like the organic polymers Polyacrylamide and Polymaleic Acid), Phosphonates and Polyphosphates. Inhibitors for fouling are biocides (as oxidants against bacteria and viruses), like chlorine, ozone, sodium or calcium hypochlorite. At regular intervals, depending on the membrane contamination; fluctuating seawater conditions; or prompted by monitoring processes the membranes need to be cleaned, known as emergency or shock-flushing. Flushing is done with inhibitors in a fresh water solution. Thus the system needs to go offline. This procedure is environmental risky, since contaminated water is rejected into the ocean without treatment. Sensitive marine habitatscan be irreversibly damaged.[12][13]


Freeze-thaw desalination uses freezing to remove fresh water from frozen seawater.[14]

One method, invented by Alexander Zarchin, used freezing and vacuuming of salt from seawater.

Solar evaporation

Solar evaporation mimics the natural water cycle, in which the sun heats the sea water enough for evaporation to occur.[8] After evaporation, the water vapor is condensed onto a cool surface.[8]

Electrodialysis reversal

Electrodialysis utilizes electric potential to move the salts through a membrane.[15]



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s